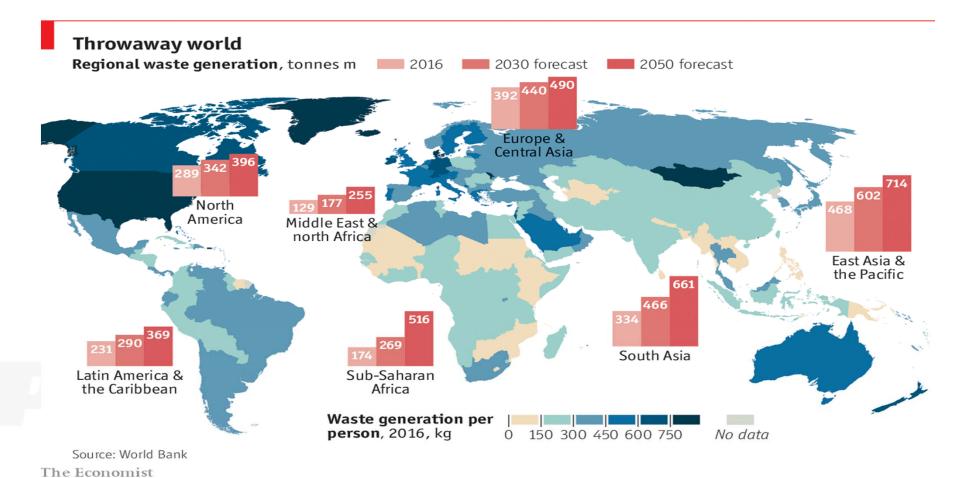

ICPE – PWL

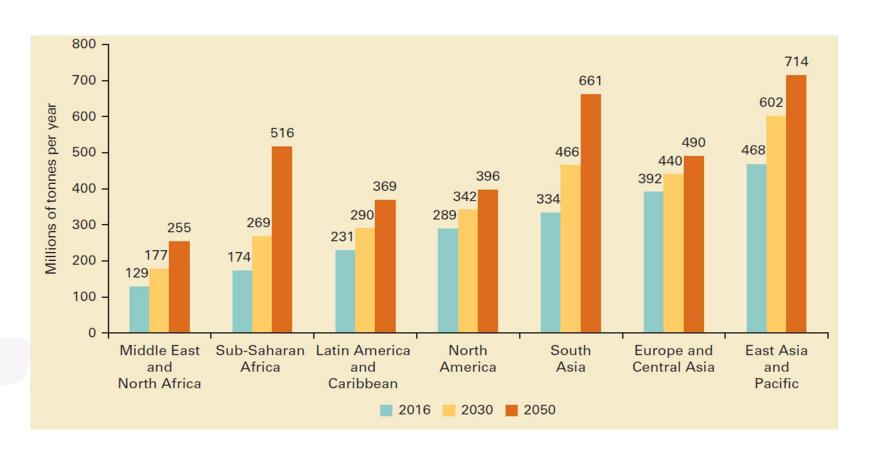
POLYCRACK – TOOL FOR PLASTICS WASTE MANAGEMENT & RECYCLING For A Circular Economy

Raghavendra Rao. T.,
POLYCRACK WORLDWIDE LIMITED

Polycrack – Tool for Circular Economy

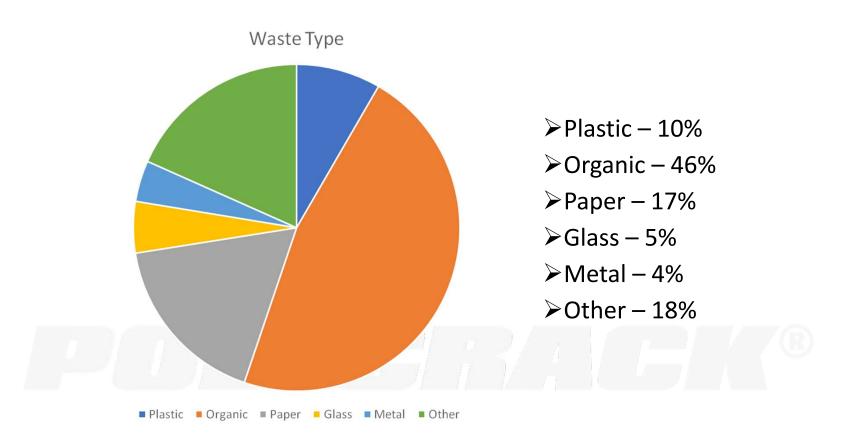
Reforming co - mingled & contaminated waste plastics into Fuel





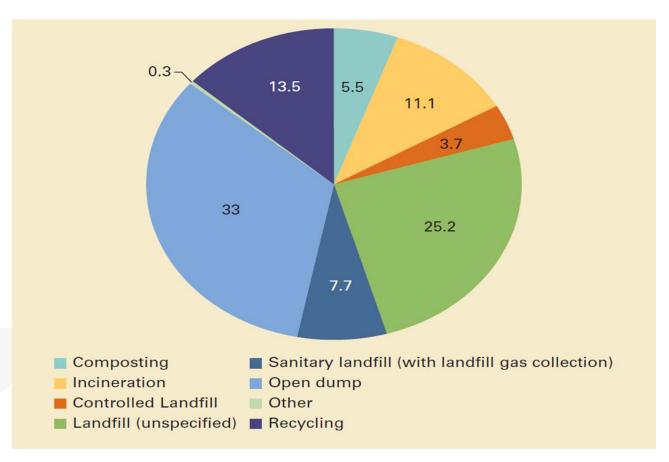
The problem

Projected generation of Municipal Solid Waste worldwide from 2016 to 2050 (millions of tonnes)


In Numbers - Global

- 1.3 billion tonnes of MSW generated globally per annum
- Projected to rise to 2.2 billion by 2025
- Under current trends, could increase by a further 70% by 2050
- MSW collection rates vary from 41% to 98%
- 55% of MSW globally is either disposed of in open dumps or landfill
- 50% (and growing) of global population live in cities; increased waste, less space for landfill, more environmental concerns and restrictions

- On average, 10% of MSW is plastic (8-12% range)
- Estimated 12 trillion tonnes of plastic in landfills and / or the environment by 2050
- Up to 500 years for plastic to decompose in landfills
- 300 million tonnes of plastic waste generated annually
- Of this, 10 million tonnes per year ends up in our oceans



Composition of MSW – Global Averages

Distribution of municipal solid waste treatment and disposal worldwide in 2016, by method

Problems associated with current methods of MSW disposal

- Zero landfill targets
- Existing landfills contaminated and land unusable
- Greenhouse Gas emissions
- Cost and environmental damage caused by transportation
- Waste not processed as created
- Potential health hazards and spread of disease
- Small percentage only recycled / reformed into valuable outputs
- High cost of many current methods
- Require pre-sorting of waste and not moisture tolerant
- No uniform waste strategies
- Waste accumulating and ending up in our oceans, on our beaches and in our countryside

Global Market Size

\$560 Billion

• Global Waste Management

\$139 Billion

• Global Plastic Waste Management

The Solution

Polycrack

Process today, leave nothing for tomorrow

The world's first patented heterogeneous catalytic process for reforming of comingled plastic & rubber waste into hydrocarbon liquid fuels, gas, carbon & water, without the need of segregation or drying, on the same day as generated.

Solution

Polycrack is able to process the following, without segregation, thereby saving time and money

Plastic Waste

 MSW

Organic Waste

Electronic Waste

Vehicle Tyres

Sludge

Vehicle Plastic Waste

Fats, Oil and Grease

Technology Recognition and Awards

Technology Assessed / Recognised

Commercialization supported

Key Awards

Lockheed-Martin Innovation

DST-FICCI Award winner

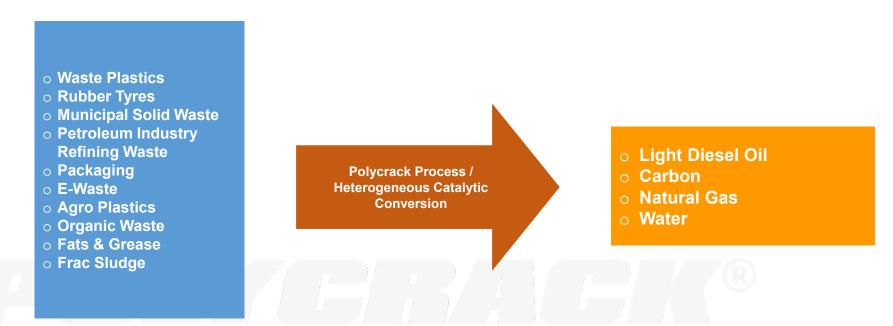
Best Innovation Gold Medal 2007

Nominated for Tech-Museum Awards 2008

Frost & Sullivan – Global Innovation and Leadership Award -2011

IGCW-2011 – Best Green Chemistry Innovation Award

Patents


USA - Granted

South Africa - Granted

What is Polycrack?

World's first patented heterogeneous catalytic process for reforming of contaminated and co – mingled waste containing hydrogen and carbon into hydrocarbon liquid fuels, hydrocarbon gas, carbon & water, without the need of segregation or drying, on the same day as generated.

Process Today - Leave nothing for tomorrow!

Polycrack - Feedstocks

- Ocean plastics co mingled with other sea waste
- Beach plastics contaminated with sand and salt water
- Multi layer plastics packaging plastics with residue, contamination and moisture
- MSW Plastics contaminated with organic and other waste
- Mix plastics co mingled various types of plastics without segregation
- Plastics with metal.
- Plastics with glass
- E waste plastics
- Automobile plastics
- Rubber in any form Tires (braided/ non Braided)
- Remaining RDF post conversion of organic waste
- Tolerance of PET up to 10%
- Tolerance of PVC up to 5%

^{*}Excess contamination of any type may require pre processing/ washing like removing inert/ sand etc.

Why use Polycrack?


- Pre-segregation can be avoided.
- Drying of plastics and rubber with contamination not required.
- Process the solid waste on the same day as it generates. Leave nothing for tomorrow.
- Plant uses the energy it generates making it self sustainable with minimal external power requirement. Thereby saving money on electricity.
- Plant requires minimal land. Approximately 1 acre per 50 TPD plant. Thereby releasing the burden of land requirement.
- Polycrack can also be used for mining old landfills and recover land for public use.
- Environmentally friendly process.
- Requires minimum water
- Modular system that can be upgraded based on waste generation.
- Most effective in decentralised waste management.
- Entire unit is enclosed hence does not generate dust or smoke pollution.
- Automated system requires minimum manpower
- Economic cost of operation
- Helps in achieving "ZERO WASTE AT LANDFILL"
- Polycrack Smart solution for a Smart City!

Polycrack Benefits

Distributed network of small modular

units

Waste diverted from landfill Reduce waste disposal costs

Produce low-sulfur diesel fuel at competitive price

Reduce Environmental Impact

Environmental Benefits

- Non-Polluting
- No Dioxins and Furans
- o Low PM count
- Low Nitrogen Oxide & Sulphur Oxide emissions
- o Low Toxic Metals
- All readings & emissions below permissible limits worldwide
- o Environmentally Friendly

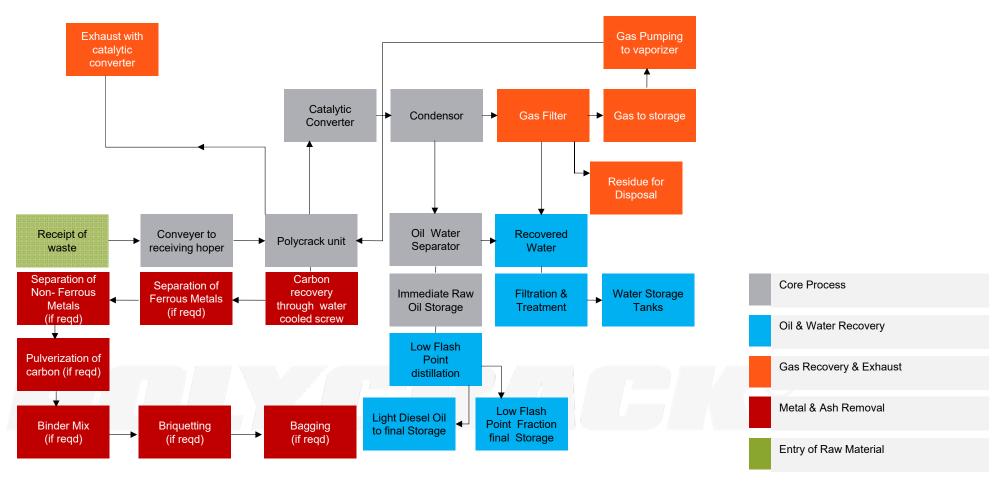
Polycrack System Benefits

- No pre-segregation of waste required
- High tolerance to moisture no pre-drying
- Modular system can match plant size to waste volumes
- Plant uses energy generated minimal external power requirement
- Can process waste where generated and when created limit haulage costs
- Can be used to mine old landfill sites reclaim land for use
- Can extract oil from shale
- Easy to use minimal manpower requirement

Solves waste problems in a cost-effective way with a revenue generating model

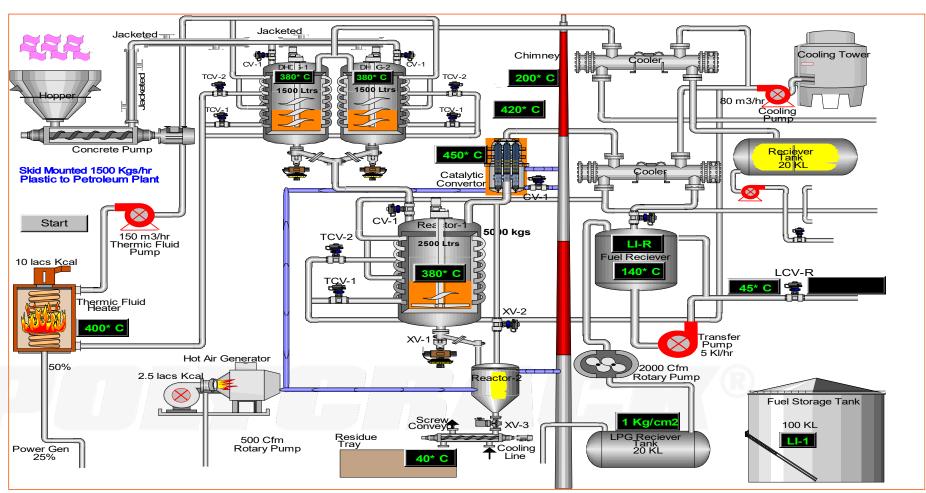
Polycrack – Comparison with other Technologies

Technology	Heat Rate	Input	Output	Emission
Polycrack	450°C	Unsegregated Mixed Waste	Oil, Gas, Activated Carbon & Moisture	Low
Pyrolysis	600°C	Dry Segregated Waste	Oil, Gas, & Charcoal	High
Incineration	850°C	Unsegregated Mixed Waste	Ash, Fly ash, and Flue Gas	High
Gasification	1,500°C	Segregated Mixed Waste	Syngas	Medium
Plasma Arc Gasification	2,000°C	Segregated Mixed Waste	Syngas	Medium
Refuse Derived Fuel	1,200°C	Plastics & Biodegradable waste	Fuel	Low
Biogas	750°C	Organic Waste	Gas	Low
Thermal depolymerization	500°C	Plastic & Organic Waste	Oil	Medium



Polycrack Input – Output Data

Sr. No.	Input	Oil	Gas	Carbon	Moisture	Scrap
1	PET	0%	35%	35%	30%	0%
2	HDPE	80%	10%	10%	0%	0%
3	LDPE	80%	12%	8%	0%	0%
4	PVC	35%	20%	45%	0%	0%
5	Nylon 6	20%	35%	45%	0%	0%
6	PP	75%	10%	15%	0%	0%
7	Auto Plastic	55%	15%	30%	0%	0%
8	MSW	7%	22%	45%	26%	0%
9	Tyres	45%	15%	40%	0%	0%
10	Electronic Waste (Plastics)	50%	15%	35%	0%	0%



Polycrack Technology: Process flow chart

Polycrack Process Flow Diagram

Polycrack System- Input yield details

Preferred feedstock

Mixed Plastic

MSW

Used Tyres

Fat, Oil & Grease

E Waste

Sludge

Conversion Ratio and its Yield

Types of Plastic	Yields		
HDPE, LDPE, PP	1 k.g. to 1.1 litres		
Other Plastics	800 ml per k.g.		
PVC	300 ml per k.g.		
PET	Not Applicable		

Fuel Quality Comparison

Specifications	Regular Diesel Fuel	Polycrack Fuel
Colour Visual	Orange	Pale Yellow
Specific Gravity 28 deg C	0.81 – 0.85	0.81 – 0.85
Gross Calorific value	11, 210	11, 260
Net Calorific value	10, 460	10, 500
API gravity	40 - 45	40 - 45
Sulphur content	0.1	<0.002
Flash Point	35	*35 – 65

^{*}Flash point can be adjusted as per local norms to produce oil or LDO as the case may be.

Polycrack Technology: Output

Process parameters

Parameter	Polycrack	
Plastic	All plastics including Polyethylene Polyproplene, Polystyrene, PVC, PVA, Industrial plastics, automobile fluff, biomedical waste etc.	
Temperature	190 – 350 deg c	
Pressure	Atmospheric/vacuum	
Nitrogen Puring	Not required	
Yield	Input dependent	
Example yield of fuel from HDPE	1.1 liter per kg of plastic	
Fuel Quality	Excellent meets standards	
Catalyst	Consumable	
Residue from process	Free flowing carbon powder	

Output Yield Data

Product Yield	Quantity (wt%)		
Gas	8-12%		
Liquid Hydrocarbons	60-80%		
Coke Residue	10-12%		

Analysis of Output

Carbon No.	Corresponds to	Quantity (wt%)	
Up to C10	Gasoline	34.0	
C10 to C13	Kerosene	27.0	
C13 to C20	Diesel	23.0	
C20 and Above	Fuel Oil	16.0	

Installed Plant – New Moti Baug – New Delhi

Successfully operating since May 2014 and achieved the status of zero discharge premise.

Polycrack Plant at East Coast Railway Workshop, Bhubaneshwar

POLYCRACK®

Polycrack Plant at Hindalco - Sambalpur

Upcoming Polycrack Site at Amman, Jordan

Polycrack – Upcoming site at Sunoco Refinery-USA

Polycrack Unit - Slovenia

POLYCRACK®

Visitors to New Moti Baug Plant

Amber Rudd (UK) & Ms Meenakshi Lekhi

Ambassador of Egypt

Japan

Ambassador of Tunisia

Visitors -

University of Minnesota

Delegation from Italy

Students from Africa

Australian Delegation

Thank you
For more information write to tony@polycrack.com

